Bio-Spun™ Scaffold	Туре	Application	Differential Advantage vs. Current State	Potential Models
Polyester (PET)	Non- Degradable	 Cosmeceuticals Drug Discovery Tox Screening Cell Delivery Microfluidics Models Organ-on-a-Chip Models Wound Healing 	 Scaffold made from polymers that are used in current membrane (polymer recognition) No animal proteins required to achieve tissue attachment Staggered porosity allows for tissue ingrowth to better replicate ECM Contraction does not occur due to cellular infiltration 	Skin, Airway, Lung, Intestine, Liver, Organoid, Spheroid (Beneficial for models that require tissue depth, such as full thickness skin models)
Polyurethane (PU)	Non- Degradable	 Drug Discovery Tox Screening Microfluidics Models Organ-on-a-Chip Models 	 Scaffold has elastic properties to better replicate flexure in tissues in heart, muscle and lungs vs stiff membranes No animal proteins required to achieve tissue attachment Staggered porosity allows for tissue ingrowth to better replicate ECM Contraction does not occur due to cellular infiltration 	Cardiac, Lung, Arterial, Blood/Brain Barrier and Muscle (Beneficial for models that require cells to remain more surface bound, such as partial thickness models)
PLGA-PLLA Bilayer (Apical : PDLGA Basal: PLLA Electrospun)	Biodegradable	 Cosmeceuticals Drug Discovery Tox Screening Wound Healing Tissue Regeneration Microfluidics Models Organ-on-a-Chip Models 	 Scaffold degrades over time leaving only grown tissue 3D structure results in 3D tissue formation with human proteins No animal proteins required to achieve tissue attachment Staggered porosity allows for tissue ingrowth to better replicate ECM 	Eye, Skin, Airway, Liver, Gut (Beneficial for models that require tissue depth <u>and</u> want limited scaffold to remain, such as full thickness skin models)
PLGA	Biodegradable	 Cosmeceuticals Drug Discovery Tox Screening Wound Healing Tissue Regeneration Microfluidics Models Organ-on-a-Chip Models 	 Scaffold degrades over time leaving only grown tissue 3D structure results in 3D tissue formation with human proteins No animal proteins required to achieve tissue attachment Staggered porosity allows for tissue ingrowth to better replicate ECM 	Eye, Skin, Airway, Liver, Gut (Beneficial for models that require cells to remain more surface bound or apart and would like the scaffold to mostly dissolve, such as partial thickness models)